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CONVERSION FROM ENGINEERING UNITS TO TELEMETRY
COUNTS ON DRYDEN FLIGHT SIMULATORS

Jay A. Fantini
Woodside Summit Group Incorporated

Edwards, California

ABSTRACT

Dryden real-time flight simulators encompass the simulation of pulse code modulation (PCM) telemetry

signals. This paper presents a new method whereby the calibration polynomial (from first to sixth order),

representing the conversion from counts to engineering units (EU), is numerically inverted in real time.
The result is less than one-count error for valid EU inputs. The Newton-Raphson method is used to

numerically invert the polynomial. A reverse linear interpolation between the EU limits is used to obtain

an initial value for the desired telemetry count. The method presented here is not new. What is new is

how classical numerical techniques are optimized to take advantage of modem computer power to

perform the desired calculations in real time. This technique makes the method simple to understand and

implement. There are no interpolation tables to store in memory as in traditional methods. The NASA

F-15 simulation converts and transmits over 1000 parameters at 80 times/sec. This paper presents

algorithm development, FORTRAN code, and performance results.
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INTRODUCTION

NASA Dryden Flight Research Center (DFRC), Edwards, California, flight simulators encompass the

simulation of pulse code modulation (PCM) telemetry signals. These signal streams contain data relating

to accelerations, velocities, and other vehicle states. The streams, along with voice, video, and simulated

radar data, are used to rehearse for actual flight missions and to train control room personnel, so they can

become familiar with expected values and learn emergency procedures.

A PCM system is an electronic device mounted in a vehicle that converts analog measurements into

digital counts, or scaled integers that represent state values of the vehicle. These counts are transmitted

through a radio signal to a ground station for real-time tracking and data archival. Control room

personnel use this information to determine if the vehicle is operating correctly. In a flight simulator, the

vehicle states are calculated and stored as floating point numbers. The process of converting the analog

measurements into counts is programmed into the flight simulation in order to mimic the behavior of a

PCM system.

Before a PCM system can be used, it must first be calibrated. Calibration consists of matching count

values to their corresponding real-world analog values. These values are called engineering units (EU).

Ideally, the PCM system should cover the entire range of the e _pected values of the physical parameter

being measured. The PCM systems measure their transmission resolution in number of bits. That means
the device can count from 0 to 2 n - 1 where n is the number of bits. The total counts is thus 2 n. The

majority of PCM systems range from 10 to 20 bits of resolution. These counts correspond to ranging

from 1 part in 1,024 to 1 part in 1,048,576 because 21° -- 1024 = 103 and 220 = 1,048,576 = 106.

The zero value would correspond to the one extreme value of the physical parameter, and the 2n - 1 value

would correspond with the other extreme value. In practice, tht: entire domain is not used. For example

for a 10-bit PCM system, the count domain of interest might be from 50 to 800 instead of 0 to 1023. The

majority of the time, the relationship between the counts and the EU is linear. In cases where the relation-

ship is not linear, a polynomial curve fit is performed on th,_: counts and EU data pairs. This paper

addresses the question of conversion from EU to counts when the relationship is a polynomial. The

polynomial is valid for all count values that are bounded by the lower count limit and the upper count

limit. The returned value is the corresponding EU value. The fo_nn of the polynomial is



EU = P,,(x)Vx_ [L, U] (1)

where x is counts, and L,U are count bounds.

The ideal solution is to solve equation (1) in closed form when given the coefficients. For polynomials of

degree 5 or higher, a fast numerical method that yields the root that lies within the minimum and maxi-
mum counts value would be desirable. Modem computers, used for real-time flight simulation, compute

at speeds over 20 MFLOPS/CPU (scalar) with 15 decimal digits of precision. In a typical flight simula-

tion, multiple CPU are used to distribute the workload. One CPU simulates the engine; another, the

aerodynamic forces on the aircraft; and still another, the navigation. A dedicated CPU is used for

simulating the PCM stream.

A typical NASA DFRC simulation has 100 to 1500 parameters that are converted every frame. The frame

rate ranges from 80 to 200 Hz. The conversion polynomials range from first to sixth order with the major-

ity of nonlinear polynomials being second and third order. The simulation is hosted on a computer

equipped with 128 MB of memory and four to eight 64-bit CPU running at 195 MHz. The computing

power of one CPU is sufficient to give the simulation engineer the ability to numerically solve these

polynomials in real time through a quadratic convergent or more efficient numerical method provided the

polynomials fulfill certain conditions.

STATEMENT OF PROBLEM

The objective of this research is to develop a method of solving equation (1) for x numerically in real

time, for each parameter, such that the absolute error of the solution is less than 1 count. The count

domain, EU range, polynomial, and EU value to be converted into a count are known. The EU value of

interest must lie within the EU range. The main condition on the polynomial is that it is monotonic,

increasing or decreasing for all counts within the count range. Here monotonic means that for counts

within the counts domain, the slope of the polynomial does not change sign, and the slope is never equal

to zero over a non-zero interval. If this condition were not met, then there would be two different counts

that correspond to the same EU value. In formal notation, the conditions are as follows:

EU_MIN, the minimum expected value of parameter being measured;

EU_MAX, the maximum expected value of parameter being measured;

count value L such that Pn (L) = EU_MIN;

count value U such that P,, (U) = EU_MAX;

monotonic polynomial Pn (x) Vx _ [L, U], n > 1; and

EU _ 5R such that Pn(L) < EU < Pn(U).

Linear interpolation is a common technique currently used on flight simulators to perform the conversion.

The basis of this technique is as follows:



. During initialization, generate a table containing (P,, (x), x) for x = L to x = U with m evenly

spaced entries. The simulation engineer chooses the value for m. This value is based on accuracy

needs and computer memory usage. Note that the table entries are reversed.

2. During run time, perform a linear interpolation using the EU value and the generated table to

obtain the required counts value.

This technique has the advantage of being very simple to implement because it is the same technique

used to obtain coefficient values from aerodynamic tables. The main disadvantages are as follows:

, Depending on size of m for each parameter, the method consumes large amounts of computer

memory. For example in cases with 1000 parameters, each parameter generates an interpolation

table of 64 entries. Storage for 128 numbers is required for each parameter. Assuming each

number is a floating point type (e.g. FORTRAN's REAL*4) and consumes 4 bytes of computer

memory, 512,000 bytes (0.5 MB) is used for the entire simulation. Note that the coefficients used

to generate the interpolation tables can be erased from computer memory once the tables have

been generated.

2. Further complexity is introduced by using a different value for m for each parameter. This value

would be another number for the simulation program to track.

3. Careful analysis must be made to ensure that m is large enough to return a result to within the

desired error. To minimize the error for a given m, uneven spacing in the interval is needed.

. The larger m is, the longer the interpolation takes. The majority of linear interpolation methods

perform a linear search within the interval to find the correct subdivision before the actual interpo-

lation takes place. The run time for this would be on the order of m (O(m)). For advanced search

schemes, such as bisection, the run time would be O(log(m)). Programming techniques can reduce

these times; however, increased complexity and memory usage will result.

The method given in this paper overcomes these limitations. Memory usage is limited to storing the

coefficients of Pn (x), the order of the polynomial, the values of L, U and EU. Run time is a function of

the order of the polynomial only for a given computer platform.

SOLUTION

The solution is to numerically solve equation (1) directly either by closed-form solution or with an

iteration scheme. For polynomials of first and second order, the well-known linear and quadratic formu-

lae are used. For third order and higher, the Newton-Raphson method is used.

In the linear case, the equation

y = ax + b (2)

is solved through
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x = (y- b)/a (3)

which involves two floating point calculations.

In the quadratic case, only one of the roots of the quadratic formula is computed. For the equation,

2 (4)
y = ax +bx+c

the general solution is

x = [-b+ 4(b 2-4a(c-y))]/(2a) (5)

For the polynomial P2 (x), only one of the roots lie in the interval bounded by L and U. One of the

conditions cited by equation (1) is that Pn (x) be strictly monotonic, increasing or decreasing for all x in

[L,U]. This requirement prevents having the slope be zero within a subinterval of the stated interval.

Thus, P,, (x) will have a unique inverse for all EU in [EU_MIN, EU_MAX].

If L < U, then the desired root to P2 (x) will be

X = [-b + _](b 2-4a(c-y))]/(2a) (6)

Otherwise, P2 (x) will be

x = [-b- 4(b 2-4a(c-y))]/(2a) (7)

The most time-consuming part of this calculation for real-time computation is the square root.

For polynomials of third degree or higher, numerical methods are used. It is possible to solve third- and

fourth-order polynomials in closed form, but the formulae involve radicals and trigonometric functions.

This approach is too time consuming for real-time use and would not lend itself to being generalized for

higher order polynomials. Because only the root that lies within [L,U] is desired, a numerical method,

such as Newton-Raphson or Halley's, can be used.

Two main concerns exist when using numerical techniques in real-time calculations: (1) convergence to

root within precision and (2) time constraints and robustness of algorithm. Halley's method requires the
2 2 , • •

calculation of not only P,, (x) but also OP,,(x)/Ox and 0 Pn(x)/bx . Halley s method enjoys cubl.c

convergence; that is, the number of correct digits triple after every iteration for x near Xan s where Xan s IS

the root. In general, the quicker the method converges, the more critical it is that the initial approximation

to the root be as close to the actual root as possible. This brittleness can be somewhat overcome by using

the Newton-Raphson method 1 which is quadratic convergent. Newton's method is as follows:

For y = f(x) = O, x = x-f(x)/s(x) (8)

where s(x) = Of(x)/Ox for x 0 near x and



wherex 0 is the initial approximation of the root.

For Pn (x), the following two questions arise:

• How is x 0 selected when given Pn (x), L, U?

• How are Pn (x) and 3Pn(X)/3x evaluated quickly?

One of the conditions on Pn (x) is that it be monotonic within [L,U]. From this condition, the existence of

a unique inverse in the interval [EU_MIN,EU_MAX] is known. Assuming that

EU_MIN < EU < EU_MAX (9)

where EU is the engineering units value whose corresponding count is sought, construct the equation of a

line using the points {(EU_MIN,L),(EU_MAX,U) } giving

m = (U - L)/(EU_MAX-EU_MIN)

b = L - EU_MIN * m

x o =m*z+b (10)

Evaluate equation (10) at z = EU to obtain the initial root to Pn(X). Once x 0 has been derived from

equation (10), iterate using equation (8), where f(x) = Pn (x) -EU until convergent.

The evaluation of Pn (x) and _Pn(x)/_x can be sped up by use of H6mer's notation. For a polynomial,

n n-I n-2 (11)
Pn(x) = anX +an_lX +an_2 x +...a 0

The polynomial can be rewritten as follows:

Pn(x) = (((anX + an-l) x+an-2) x+ an -3"") +aO (12)

Equation (12) enables computation of Pn (x), using n multiplications and n additions. To compute

Pn (x) / Ox through H6mer' s notation, equation (13) is used.

n-1
_xn/_x = nx (13)

This computation gives

OPn(x)/Ox = [[[ann. X +a n_l(n-1)]x +a n_2(n-2)]...al] (14)

Equations (12) and (14) enable one to evaluate a polynomial ant its derivative without direct calculation

of integral powers. This evaluation results in increased perfommnce as multiplication takes fewer CPU

cycles than evaluation of powers.
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Numericalexperimentationhasshownthatfour iterationsaresufficientto obtainaresultthatdiffers from
the actualroot by lessthen0.5 counts.This result is thenroundedto the nearestintegerbefore being
returnedto thecalling program.

IMPLEMENTATION IN FORTRAN

The appendix contains the FORTRAN listing of the method as used at DFRC. This method consists of

three routines: PLYSLV which solves the polynomial, PLYEVL which evaluates the polynomial at the

selected point through HiSrner's notation, and PLYSLP which evaluates both Pn (x) and OPn(x)/Ox at

the same time to reduce subroutine calling overhead.

The inputs for PLYSLV are as follows:

CTMIN m The value of CT_MIN expressed as a double precision number.

CTMAX -- The value of CT_MAX expressed as a double precision number.

COEF -- The double precision array of coefficients of the polynomial where COEF(0) is the constant

term.

N -- The order of the polynomial expressed as an integer.

X m The EU value input.

The returned value is the solution of equation (15)

Pn (x) - EU = 0 (15)

expressed as a double precision number where x is bounded by CTMIN and CTMAX.

As an example to solve the polynomial

P3(x) = 8.9617387E-8x 3- 2.5674509E- 4x 2 + 0.80511892x - 106.4193 (16)

where CTMIN = 0, CTMAX = 1023

P3 (CTMIN) = -106.4193, and P3 (CTMAX) = 544.470472738 are generated. Solving for EU = 0.0 is

required. The root that lies in [-106.4193, 544.470472738] is x = 137.955 which when rounded is
138 counts.

PERFORMANCE

This method was tested on a computer with a 64-bit microprocessor running at 195 MHz. Compilation

and optimizations flags were used to obtain maximum performance. A small main program was written

that takes the following input:
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• The polynomial coefficients and order of polynomial

• The values for EU_MIN and EU_MAX

• The number of steps, M

The program varies the EU value from EU_MIN to EU_MAX along M evenly divided steps. This

variance prevents the optimizer from Ol_timizing away any calculations and serves to simulate a slowly
varying EU value. For all cases, M = 10'.

Order of Polynomial Solutions/See Remarks

6 588,000

5 714,000

4 769,000

3 909,000

2 3,030,000

1 9,090,000

Highest order tested

Lowest order using iteration

Quadratic formula used

Linear solution

CONCLUSION

The method presented here to convert from engineering units values to counts have the advantages of

(1) greatly reduced memory usage as linear interpolation tables are not used and (2) removal of errors

caused by linear interpolation. These attributes allow the simulated pulse code modulated stream to be

compared with actual aircraft-generated streams to determine the difference in behavior between flight

simulation models and actual aircraft. The main disadvantage of the method is that a great deal of

computer power is required to solve the higher order polynomials in real time. As computer performance

improves because of technical advances, the power demand of the method will be less of a concern.

,
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APPENDIX

The FORTRAN-77 listing for converting from engineering units to telemetry counts is

appendix.

DOUBLE PRECISION FUNCTION PLYSLV(CTMIN,CTMAX,COEF,N,X)

IMPLICIT NONE

DOUBLE PRECISION CTMIN,CTMAX,X

DOUBLE PRECISION ANS,A,B,C,T,D,E,Y,S

DOUBLE PRECISION PMIN,PMAX,XM,XB

INTEGER N,I

DOUBLE PRECISION COEF(0:N)

DOUBLE PRECISION PLYEVL

C

C

CTMIN and CTMAX are arranged such that

Pn(CTMIN) < Pn(CTMAX)

ANS=0.0D0

IF (N .EQ. 1) THEN

A=COEF(1)

B=COEF(0)

ANS=(X-B)/A

GOTO 900

END IF

given in this

IF (N .EQ. 2) THEN

A=COEF(2)

B=COEF(1)

C=COEF(0)-X

T=2.0D0*A

D=-B

E=DSQRT(B*B-4.0D0*A*C)

IF (CTMIN .LE. CTMAX) THEN

ANS=(D+E)/T

ELSE

ANS=(D-E)/T

9



END IF

GOTO 900

END IF

C

C

C

C

C

Perform a reverse linear interpolation

between the points [CTMIN,Pn(CTMIN)]

and [CTMAX,Pn(CTMAX)] using the value

of X (number to be solved for) to generate

X0 (initial value of counts value).

100

PMIN=PLYEVL(COEF,N,CTMIN)

PMAX=PLYEVL(COEF,N,CTMAX)

XM=(CTMAX-CTMIN)/(PMAX-PMIN)

XB=CTMIN-PMIN*XM

ANS=XM*X+XB

DO 100 I= 1,4

CALL PLYSLP(COEF,N,ANS,Y,S)

ANS=ANS-(Y-X)/S

CONTINUE

900 PLYSLV=ANS

RETURN

END

SUBROUTINE PLYSLP(C,N,X,S,T)

IMPLICIT NONE

DOUBLE PRECISION X,S,T

INTEGER N,I

DOUBLE PRECISION C(0:N)

C

C

C

This subroutine will compute the value of

Pn(x),dPn(x)/dx when given:

Coefficients with C(0) being the constant

10



C
C

C

C

C

C

C

term,N is theOrderof thePolynomial
andX is thevalueto evaluateat.

Outputs:Sis Pn(x),T is dPn(x)/dx
This subroutineis for solvingpolynomials

of order4-6 for PCMconversion.

N mustbe> 1.

23-MAY-1997

100

S=C(N)
T=S*DBLE(N)
DO 100I=N-I,1,-1

S=S*X+C(I)

T=T*X+C(I)*DBLE(I)
CONTINUE

S=S*X+C(0)
RETURN

END

C _______

DOUBLE PRECISION FUNCTION PLYEVL(C,N,X)

IMPLICIT NONE

DOUBLE PRECISION S,X

INTEGER N,I

DOUBLE PRECISION C(0:N)

100

S=C(N)

DO 100 I=N- 1,0,- 1

S=S*X+C(I)

CONTINUE

PLYEVL=S

RETURN

END

I1
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